
Use the Wowza ClearCaster GraphQL API
Updated on 02/03/2023 11:26 am PST

The Wowza™ ClearCaster GraphQL API enables you to manage your Wowza ClearCaster™ appliance and

broadcasts directly via the API. GraphQL APIs are structured so that the operations mirror the responses.

This article describes how to create, configure, manage, publish, and end a broadcast with the Wowza

ClearCaster GraphQL API. Some additional useful operations are also provided.

Note: Wowza ClearCaster version 2.0.0.07 or later is required.

Video tutorial: Get started with the Wowza ClearCaster GraphQL API

Overview of the Wowza ClearCaster GraphQL API schema

If you're not familiar with the structure and terminology of GraphQL APIs, see GraphQL Schema and Types

for more information.

The Wowza ClearCaster GraphQL API uses three root object types: query, mutation, and subscription. All

example operations will use these root object type as operational keywords as well as the operation name.

Query operations return an item or an array of items, while mutations create or modify objects and can

return a field or an array of fields for the created or updated object. Note that mutation operations return

object IDs, which are required as input for subsequent operations.

https://graphql.org/learn/schema/

To make the API more intuitive to use, we've used the following naming patterns:

Any operation that starts with create has a corresponding delete operation.

Any operation that starts with add has a corresponding remove operation.

Any operation that starts with set can add an item in addition to modifying a value.

For a complete list of operations and their arguments, see the documentation in the GraphiQL app or our

Wowza ClearCaster GraphQL API reference documentation.

Known limitations

Only the following video codecs and implementations are supported:

H.264

MainConcept software transcoding (default)

x264 software transcoding (x264)

Intel QuickSync hardware-accelerated transcoding (QuickSync)

H.265

Intel QuickSync hardware-accelerated transcoding (QuickSync)

Object hierarchy

To help you understand the schema on which the Wowza ClearCaster GraphQL API is built, we provide an

object hierarchy graph as part of our reference documentation. The object hierarchy shows the different

types of objects as well as how they relate to each other. To see this visualization of the API, see 'Object

Hierarchy' in our Wowza ClearCaster GraphQL API reference documentation.

Use GraphiQL to access Wowza ClearCaster GraphQL API

We recommend using the GraphiQL app, an interactive, browser-based IDE for exploring and using

GraphQL APIs. You can use GraphiQL the same way you might use Postman to test and learn about other

types of APIs. For your convenience, we provide an instance of GraphiQL for you to use to explore the

Wowza ClearCaster GraphQL API.

Note: For more information about GraphiQL, see the GraphiQL GitHub repository.

1. Sign in to Wowza ClearCaster Manager at clearcaster.wowza.com.

2. Click Manage in the menu bar, click the Integrations tab, and then click Generate a new ClearCaster

API Key.

3. Enter a name for your API key, and then click Generate a new ClearCaster API Key .

Important! You must save the API key, Secret Key, and GraphiQL URL provided. They are only

displayed once, but you will use them every time you access GraphiQL.

4. Open a new browser tab, and enter your GraphiQL URL.

The GraphiQL interface automatically opens using the account-specific API key and Secret Key

integrated into the GraphiQL URL.

https://www.wowza.com/_private/yeti/documentation/graphql/index.php
https://www.wowza.com/_private/yeti/documentation/graphql/index.php
https://github.com/graphql/graphiql
https://clearcaster.wowza.com

Create a broadcast

Next, create a broadcast using yourNamespaceId and replacing broadcastName with the name of the

broadcast. Note that inputs takes an array of one or more source streams.

The following example creates the broadcast as well as defining the following objects associated with the

broadcast: an array of at least one input, an array of at least one broadcast encoder, a stream target, and

the video and audio encoding configurations. Note that each of these objects can be created and managed

separately as well.

mutation createBroadcast {
 createBroadcast(namespaceId: "yourNamespaceId",
 input: {
 name: "broadcastName",
 inputs: {
 inputType: CAPTURE_HARDWARE,
 videoFrameWidthMax: 1920,
 videoFrameHeightMax: 1080,
 videoFrameRateMax: 30,
 broadcastInputEncoderIndex: 0
 },
 broadcastEncoders: [
 {
 encoderId: "yourEncoderId",
 streamTargetEncoderIndex: 0,
 broadcastInputEncoderIndex: 0
 }
],
 outputs: [
 {
 streamName: "1080p30",
 streamTargets:[
 {
 url: "rtmp://sourceURL",
 streamName: "yourStreamName",
 protocol: RTMP,
 streamTargetEncoderIndex: 0,
 },
],
 encodingConfiguration:
 {
 name: "1080p30",
 encodingConfigurationVideo:
 {
 codec: "H.264",
 implementation: "x264",
 frameSizeFitMode: "stretch",
 frameSizeWidth: 1920,
 frameSizeHeight: 1080,
 profile: "main",
 bitrate: 8000000,
 bitrateMin: 1000000,
 autoAdjustBitrate: true,
 keyFrameIntervalFollowSource: true,
 keyFrameInterval: 60,
 parameters: [
 {
 name: "x264.preset",
 value: "3",
 type: "Long"
 },

This returns a broadcast ID (yourBroadcastId), which is used in other operations.

Publishing the broadcast

A broadcast can be activated or deactivated. Activated broadcasts can have a status of IDLE (default),

PREVIEW, LIVE, STOPPED.

Activate the broadcast

Note: A broadcast must be activated to be published, however, if the broadcast you're activating already

has a status of LIVE, it will go live immediately. Always make sure the broadcast status is IDLE before

activating the broadcast. For more information, see Set the broadcast status.

 To activate the broadcast, use the following operation with yourBroadcastId.

 },
 {
 name: "x264.ref",
 value: "1",
 type: "Long"
 },
 {
 name: "x264.bframes",
 value: "1",
 type: "Long"
 }
]
 },
 encodingConfigurationAudio:
 {
 codec: "AAC",
 bitrate: 96000
 }
 }
 }
]
 }
) {
 id
 name
 }
}

{
 "data": {
 "createBroadcast": {
 "id": "yourBroadcastId",
 "name": "broadcastName"
 }
}

http://www.wowza.com/#broadcaststatus

This returns:

Set the broadcast status

Use the setBroadcastStatus operation with yourBroadcastId to update the status of a broadcast. The status

can be set to:

IDLE - (Default) Although a status can be set when creating a broadcast, we recommend always

resetting the broadcast status to IDLE before going live.

PREVIEW - Use the PREVIEW status to test the broadcast before going live.

LIVE - Use the LIVE status to publish the broadcast and deliver it to any configured stream target

destinations.

STOPPED - Use the STOPPED status to end a broadcast. If you're done with the broadcast, you'll

usually want to deactivate it as well. See Deactivate the broadcast.

The following operation demonstrates how to set the broadcast status to IDLE. The same operation can be

used to set the other statuses by changing 'status: IDLE' to one of the other defined status values.

mutation activateBroadcastEncoders {
 activateBroadcastEncoders(broadcastId: "yourBroadcastId") {
 id
 broadcastEncoders {
 id
 encoder {
 id
 deviceId
 name
 }
 }
 }
}

{
 "data": {
 "activateBroadcastEncoders": {
 "id": "yourBroadcastId",
 "broadcastEncoders": [
 {
 "id": "yourBroadcastEncoderId",
 "encoder": {
 "id": "yourEncoderId",
 "deviceId": "encoderUUID",
 "name": "encoder1"
 }
 }
]
 }
 }
}

http://www.wowza.com/#deactivatebroadcast

This returns:

Deactivate the broadcast

Use the following operation, with yourBroadcastId, to deactivate a broadcast.

When you've successfully deactivated your broadcast, you should see a response similar to the following:

Note: Deactivated broadcasts can be reactivated and used again. However, if you intend to use a

broadcast again make sure to reset the broadcast's status to IDLE after deactivating it. This ensures it's in

a good state when you use it again.

Useful queries

The following is a list of useful queries. For a complete list, see the documentation in the GraphiQL app.

All namespaces

mutation setBroadcastStatusIDLE {
 setBroadcastStatus(broadcastId: "yourBroadcastId", status: IDLE) {
 id
 status
 liveAt
 previewedAt
 stoppedAt
 }
}

{
 "data": {
 "setBroadcastStatus": {
 "id": "yourBroadcastId",
 "status": "IDLE",
 "liveAt": null,
 "previewedAt": null,
 "stoppedAt": null
 }
 }
}

mutation deactivateBroadcastEncoders {
 deactivateBroadcastEncoders(broadcastId: "yourBroadcastId") {
 id
 }
}

{
 "data": {
 "deactivateBroadcastEncoders": {
 "id": "yourBroadcastId"
 }
 }
}

All encoders

All encoders by deviceId

All broadcasts

query allNamespaces {
 allNamespaces {
 id
 name
 }
}

query allEncoders {
 allEncoders {
 id
 name
 deviceId
 }
}

query encoderByDeviceId {
 encoderByDeviceId(deviceId: "encoderUUID") {
 id
 name
 deviceId
 }
}

A broadcast

query allBroadcasts {
 allBroadcasts {
 id
 name
 inputs {
 inputType
 videoInput
 videoFrameWidthMax
 videoFrameHeightMax
 videoFrameRateMax
 videoAspectRatioMode
 videoAspectRatioWidth
 videoAspectRatioHeight
 videoAspectRatioRotation
 audioLevel
 overlayVendor
 overlayUrl
 }
 outputs {
 id
 encodingConfiguration {
 name
 encodingConfigurationVideo {
 codec
 bitrate
 }
 encodingConfigurationAudio {
 codec
 bitrate
 }
 }
 streamTargets {
 id
 url
 protocol
 streamTargetEncoderIndex
 }
 recordings {
 id
 format
 }
 }
 displays {
 id
 }
 broadcastEncoders {
 id
 streamTargetEncoderIndex
 broadcastInputEncoderIndex
 encoder {
 id
 deviceId
 name
 }
 }
 }

}

query broadcasts {
 broadcast(id: "yourBroadcastId") {
 id
 name
 createdAt
 updatedAt
 previewedAt
 liveAt
 stoppedAt
 inputs {
 inputType
 videoInput
 videoFrameWidthMax
 videoFrameHeightMax
 videoFrameRateMax
 videoAspectRatioMode
 videoAspectRatioWidth
 videoAspectRatioHeight
 videoAspectRatioRotation
 audioLevel
 overlayVendor
 overlayUrl
 }
 broadcastEncoders {
 id
 streamTargetEncoderIndex
 broadcastInputEncoderIndex
 encoder {
 id
 deviceId
 name
 }
 }
 outputs {
 id
 encodingConfiguration {
 name
 encodingConfigurationVideo {
 codec
 bitrate
 }
 encodingConfigurationAudio {
 codec
 bitrate
 }
 }
 streamTargets {
 id
 url
 protocol
 streamTargetEncoderIndex
 }
 recordings {
 id
 format
 }
 }
 }
}

